5.3.10 Acid-Base Equilibrium

The Bronsted theory states that an acid is a substance that can donate a proton, and a base is a substance that can accept a proton.

$$Acid = H^{+} + base \tag{5.17}$$

The acid and base pairs in the ionization reaction are called conjugate pairs, that is, the base is a conjugate of an acid and vice versa.

When an acid or a base dissolves in water, it will dissociate or ionize, the amount of ionization being dependent on the strength of the acid. A strong electrolyte is completely dissociated while a weak electrolyte is partially dissociated. Hydrochloric acid is a strong acid and undergoes complete ionization.

$$HCl + H_2O \longrightarrow H_3O^+ + Cl$$
 (5.18) (conjugate acid¹) (conjugate base¹) (conjugate acid²) (conjugate base²)

The proton exists in water as the hydronium ion. On the contrary acetic acid is a weak acid and ionizes partially

$$HOAc + H_2O \square H_3O^+ + OAc$$
 (5.19)

The equilibrium constant for this reaction may be represented as follows

$$k = \frac{aH_3O^+ \text{ aOAc}^-}{\text{aHOAc aH}_2O}$$
 (5.20)

where k is the acidity constant and a is the activity of the individual species. Calculations are simplified if we neglect activity coefficients and use molar concentration instead. Thus the autoprotolysis of water can be represented as

$$H_2O \square H^+ + OH^-$$

at 25°C, $k_w = 1.0 \times 10^{-14}$ or $[H^+][OH^-] = 1.0 \times 10^{-14}$. In pure water the concentration of $[H^{+}]$ and $[OH^{-}]$ are equal, or $[H^{+}] = [OH^{-}]$ so $[H^+][H^+] = 1.0 \times 10^{-14}$ then $[H^+] = 1.0 \times 10^{-7} = [OH]$

Calculate the hydroxyl ion concentration in a 1.0×10^{-2} M solution of hydrochloric acid

Solution [H⁺] [OH] =
$$1.0 \times 10^{-14}$$

since [H⁺] = 1.0×10^{-2} ; [1.0×10^{-2}] [OH] = 1.0×10^{-14}
or [OH⁻] = $\frac{1 \times 10^{-14}}{1 \times 10^{-2}}$ = 1×10^{-12} M

5.3.11The pH Scale

The pH of a solution was defined by Sorensen as the negative logarithm of the hydrogen ion concentration

 $pH = -\log H^{+}$ (5.21)

A similar definition is made for the hydroxyl ion concentration

$$pOH = - log [OH]$$

$$-\log k_w = -\log [H^+] [OH^-] = -\log [H^+] - \log [OH^-]$$

 $pkw = pH + pOH$

or

Box 5.10 Calculate the pOH and pH of a solution of NaOH Solution $[OH-] = 3.0 \times 10-3 \text{ M}$ $pOH = -\log (3.0 \times 10-3) = 3 - \log 3.0 = 3 - 0.477 = 2.52$ pH + 2.52 = 14.00 or pH = 11.48

Box 5.11 The pH of a solution is 8.43. Calculate the hydrogen ion concentration in the solution

Solution
$$pH = -log[H^+] = 8.43$$

or $[H^+] = 10-8.43 = 10^{-9} \times 10^{0.57}$
or $[H^+] = 3.71 \times 10^{-9}$ [10^{0.57} =3.71]